3.1.73 \(\int \sec (c+d x) \sqrt {b \sec (c+d x)} \, dx\) [73]

Optimal. Leaf size=63 \[ -\frac {2 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sqrt {b \sec (c+d x)} \sin (c+d x)}{d} \]

[Out]

-2*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d*x+c)^(1/2)/
(b*sec(d*x+c))^(1/2)+2*sin(d*x+c)*(b*sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {16, 3853, 3856, 2719} \begin {gather*} \frac {2 \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {2 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*Sqrt[b*Sec[c + d*x]],x]

[Out]

(-2*b*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*Sqrt[b*Sec[c + d*x]]*Sin[c +
 d*x])/d

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \sec (c+d x) \sqrt {b \sec (c+d x)} \, dx &=\frac {\int (b \sec (c+d x))^{3/2} \, dx}{b}\\ &=\frac {2 \sqrt {b \sec (c+d x)} \sin (c+d x)}{d}-b \int \frac {1}{\sqrt {b \sec (c+d x)}} \, dx\\ &=\frac {2 \sqrt {b \sec (c+d x)} \sin (c+d x)}{d}-\frac {b \int \sqrt {\cos (c+d x)} \, dx}{\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\\ &=-\frac {2 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sqrt {b \sec (c+d x)} \sin (c+d x)}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 47, normalized size = 0.75 \begin {gather*} \frac {2 \sqrt {b \sec (c+d x)} \left (-\sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\sin (c+d x)\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]*Sqrt[b*Sec[c + d*x]],x]

[Out]

(2*Sqrt[b*Sec[c + d*x]]*(-(Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]) + Sin[c + d*x]))/d

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 46.71, size = 314, normalized size = 4.98

method result size
default \(-\frac {2 \sqrt {\frac {b}{\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1\right )^{2} \left (\cos \left (d x +c \right )-1\right )^{2} \left (i \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \EllipticF \left (\frac {i \left (\cos \left (d x +c \right )-1\right )}{\sin \left (d x +c \right )}, i\right )-i \cos \left (d x +c \right ) \EllipticE \left (\frac {i \left (\cos \left (d x +c \right )-1\right )}{\sin \left (d x +c \right )}, i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sin \left (d x +c \right )+i \EllipticF \left (\frac {i \left (\cos \left (d x +c \right )-1\right )}{\sin \left (d x +c \right )}, i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sin \left (d x +c \right )-i \EllipticE \left (\frac {i \left (\cos \left (d x +c \right )-1\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+\cos \left (d x +c \right )-1\right )}{d \sin \left (d x +c \right )^{5}}\) \(314\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/d*(b/cos(d*x+c))^(1/2)*(cos(d*x+c)+1)^2*(cos(d*x+c)-1)^2*(I*sin(d*x+c)*cos(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*
(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(cos(d*x+c)-1)/sin(d*x+c),I)-I*cos(d*x+c)*EllipticE(I*(cos(d*x+c
)-1)/sin(d*x+c),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+I*EllipticF(I*(cos(d*
x+c)-1)/sin(d*x+c),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-I*EllipticE(I*(cos
(d*x+c)-1)/sin(d*x+c),I)*sin(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+cos(d*x+c)-1)/s
in(d*x+c)^5

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(d*x + c))*sec(d*x + c), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.67, size = 83, normalized size = 1.32 \begin {gather*} \frac {-i \, \sqrt {2} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + I*sqrt
(2)*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*sqrt(b/cos(d
*x + c))*sin(d*x + c))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {b \sec {\left (c + d x \right )}} \sec {\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(b*sec(c + d*x))*sec(c + d*x), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(d*x + c))*sec(d*x + c), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {\sqrt {\frac {b}{\cos \left (c+d\,x\right )}}}{\cos \left (c+d\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b/cos(c + d*x))^(1/2)/cos(c + d*x),x)

[Out]

int((b/cos(c + d*x))^(1/2)/cos(c + d*x), x)

________________________________________________________________________________________